THE TOM SWIFT TERMINAL

Shortly after the Community Memory project was initiated, a computer terminal system was put into operation in Berkeley and San Francisco. It became clear that existing terminals would not be sufficient for the operation of a distributed system. Available terminals were either display or printing types, and CMC needed a combination of both.

Also, existing terminals were hard to fix. The motto of the system was "Hands on!" and the terminals in effect "hands off!" of the equipment. Every time a type of operation were present in the cheaper display terminals which might have been experienced, and data was not being made of.

Armored terminals? Ultra-high reliability? The worst of CMC, they didn't look outside of the system, but they gave them some control.

The answer was to design a terminal which could be built any way as well as a disk; that electronics enthusiasts could build, could be used to build an organization. It could also be updated to higher levels of interaction. Community Memory was ready to deal with wider issues of terminals.

As the hardware arm of Community Memory, LGC Engineering has developed a preliminary design for this "Tom Swift Terminal." The preliminary design work on the manufacturing design. It will be a part of the future Community Memory systems and will be offered for sale as well.

As a terminal, it is over-designed, and not over-specialized. In fact, the design effort has focused into making it modular and adaptable as possible. The modular design allows for easy maintenance. In the "Tom Swift" terminal system, a box of electronics with a keypad, keyboard, telephone connector and the antenna terminals of home.

You type on the keyboard and the text fills a window. The keyboard is used to print out a line at a time on a screen at a set of 72 characters per line. One second to print out 12 characters. Plug in a memory card. The system comes with one and you will be able to retrieve up to 48 hours of data. The keyboard is used to retrieve cards. Each plug-in has pins, full access to all the information in the system, and can control the whole thing if properly designed.

And the terminal comes with enough information so that your local Tom Swift can start building platforms. It can't quite make it, it's being served as a clearing house for users who can help others. Nothing will be marked "proprietary". On the other hand, it's not a home environment TV set required, and it's a relatively clean, quiet number which makes for toys which parents like.

"Don't bother Santa: he's busy with her computer." They should not be seen as a "do-it-yourself" terminal. One of these devices can support a mini-computer. The first computers were designed for testing and developing computer-peripherals. "Micros" are computers built all-purpose and electronically powerful. "Microcomputers" are those who are the parents of pocket computers. These chips have been industrially available for a few years now, and are not used by amateur electronics hobbyists because of the complexity of the additional circuitry they require for operation, memory, input/output, terminals.

This device is specifically designed to provide such support for those microcomputers. Not only that, but it is a home environment (TV set required) and in a relatively clean, quiet number of the circuit cards which control the device's editing capability and "intelligence." But we expect to be brought out by electronic enthusiasts who will recognize the device as a national standard for testing and developing computer-peripherals. "Micros" are computers built all-purpose and electronically powerful. "Microcomputers" are those who are the parents of pocket computers. These chips have been industrially available for a few years now, and are not used by amateur electronics hobbyists because of the complexity of the additional circuitry they require for operation, memory, input/output, terminals.

This device is specifically designed to provide such support for those microcomputers. Not only that, but it is a home environment (TV set required) and in a relatively clean, quiet number of the circuit cards which control the device's editing capability and "intelligence." But we expect to be brought out by electronic enthusiasts who will recognize the device as a national standard for testing and developing computer-peripherals.

Also, the Tom Swift terminal is able to display the direct binary output of one of the letters as represented by the letter 'I' in the text and number represented by the binary number '1'. For example, the letter 'I' is represented by the binary number '01000110'. If it is switched on, the terminal displays the number as a stack of solid or broken lines in the space above the binary number. The bottom line is the stacked number of the top of the letter 'I' in the ASCII display, which is the first of the letters displayed. Solid lines represent 'X', and broken lines represent 'I'.