FARMOGERM
High-Bred Nitrogen-Gathering Bacteria

MAKES POOR SOIL GOOD SOIL

Prepared only by
EARP-THOMAS FARMOGERM CO.
BLOOMFIELD, N. J.
"It has been amply demonstrated, not only by hundreds of years of actual experience, but by numberless carefully conducted experiments in many countries and under widely varying conditions, that clover and numerous other legumes supplied with tubercle (nodule) bacteria obtain from the air through the agency of these bacteria, under favorable conditions, all the nitrogen they require, and that they leave in the soil considerable quantities for succeeding crops. In Germany the amount of nitrogen added to the soil by legumes, besides that taken off in the crop, is estimated at 200 pounds per acre. In the United States the average for sixteen states is 122 pounds, equivalent to not less than 800 to 1,000 pounds of nitrate of soda per acre."—Year Book of Department of Agriculture for 1906.
If You Are Interested

In growing larger crops of *certain* kinds this year.

In growing larger crop of *any* kind next year.

In bringing crops to maturity in shorter time than you have in the past.

In growing crops of greater food value.

In saving most of the money that nitrate fertilizers may be costing you.

In saving practically all of the work and time that the hauling and spreading of fertilizers demand.

In short, if you are interested in reaping the results of fertile soil with the least expense, effort and uncertainty on your part, then you will be interested in every word we have to say here about Farmogerm.

Because Farmogerm means—all the nitrates that the crops can use and more—at a cost of $2.00 an acre—and with no extra work worth mentioning.

Read why in the following pages.

Very truly yours,

Earp-Thomas Farmogerm Company,

Bloomfield, N. J.
DEVELOPMENT OF THE FARMOGERM IDEA.

It has been known for many years by agriculturists, and the U. S. Department of Agriculture, and State Experiment Stations have amply demonstrated the valuable results of treating legumes with the nitrogen-gathering bacteria, a form of germ life which, taking the nitrogen from the air, deposits it in the form of soluble nitrates in the roots of legumes and in the soil.

These bacteria form nodules or small swellings on the roots of the plants and multiplying by countless millions, not
only increase the growth of the plants, but furnish a large amount of nitrates for the use of following crops, as the nodules caused by bacteria contain as high as 8 per cent of nitrogen, (mixed stable manure contains only $\frac{1}{2}$ of 1 per cent). Without the bacteria the legumes, like other crops, gradually impoverish the soil.

Farmers' Bulletin, dated January, 1908, of Department of Agriculture, states: "It is worse than useless to attempt to grow any leguminous crop without being certain of the presence of the bacteria which enable the plants to fix free nitrogen. Certain regions are practically devoid of the right kind of bacteria and unless some artificial means of inoculating the germs is resorted to, the crop will be a failure."

Having fully determined the value of the bacteria, the next question was how absolutely pure cultures could be produced and delivered to the farmer or gardener in condition to be used on the crops. Inoculating the fields with bacteria by transfer of soil from another field where the bacteria were known to exist, was tried with some success, but this was expensive and there was considerable danger of spreading weeds and destructive crop diseases.
BREEDING BACTERIA ON THE ROOTS OF THE PLANTS
Farmers’ Bulletin, No. 315, of U. S. Department of Agriculture says in regard to this method, “There is great danger of spreading weeds and destructive crop diseases as well as the desirable bacteria. Under modern conditions, therefore, it is wisest to depend chiefly on the intelligent manipulation of pure cultures for inoculating leguminous crops.”

A writer in the Year Book of the Department of Agriculture for 1906, says: “Pure culture inoculation must eventually replace the soil transfer methods for all kinds of soil inoculation. The pure culture method has come to stay.”

The attempt to accomplish the result by sending the bacteria in a dormant state dried on cotton seemed, at the time, to have solved the difficulty and large quantities were sent out in this way, but such cultures proved to be unreliable. They required from one to four days of development by the user to “bring them back to life” under conditions which could only be carried out to the best advantage in a properly equipped laboratory, and a very small percentage proved to be a success.

Liquid preparations of nitrogen bacteria have been offered to the public several times, but when this method is used it is impossible to watch the growth of the bacteria or detect the presence of molds or other contaminations which soon destroy the value of the preparations.

Dr. Earp-Thomas’ discovery of a suitable jelly-like food in which the bacteria could not only live, but their growth and development be watched so that the presence of molds or contaminations would be detected, overcomes this difficulty and enables us to absolutely guarantee the purity of our cultures. This was followed by the discovery of new methods of selecting and breeding bacteria to secure a more active type with greater nitrogen fixing power.

The Department of Agriculture in one of its publications, states, “The importance of using selected seed for all crops has been so amply demonstrated, that no argument in favor of the practice is needed. Soil bacteria are no exceptions to the rule,
and pure-bred bacteria for specific work are as much an economic necessity as pure-bred sugar beets."

Tests by prominent agriculturists in different parts of the country proved that Farmogerm High Bred Bacteria would give the highest results. Some little trouble was experienced in sending them in sealed bottles, owing to lack of air space sufficient to supply nitrogen for long periods of time, and this has been solved by Dr. Earp-Thomas' invention of a stopper with glass tube containing material through which air can pass, but impervious to bacteria or germs from the air which might contaminate the contents of the bottle.

This bottle makes possible the preservation of the bacteria in an active state for a long time, prevents evaporation, and insures a moist or humid atmosphere in the bottle similar to natural soil conditions and most favorable to the growth of the bacteria.
FARMOGERM SOLVES THE PROBLEM.

The Government and State Experiment Stations have spent a vast amount of time and money to prove to you the economic necessity of inoculating soils which are lacking in nitrogen-gathering bacteria. We have spent a vast amount of time and money in producing Farmogerm, the first and only simple, sure, practical, and inexpensive medium for inoculation that all these years of scientific labor, research, and experimenting have brought forth. Farmogerm solves the problem:

First—Because it contains absolutely pure cultures of high-bred Nitrogen Gathering Bacteria placed in a jelly like food where we can watch their growth and detect the presence of injurious molds or contaminations.

Second—Because Farmogerm bacteria are bred on the roots of the particular legume they are intended for in a trans-
parent jelly where their development can be watched, and the selection of the most active specimens made. Then by successive inoculation and breeding a type developed with much greater nitrogen fixing power.

Third—Because they are delivered to you in a bottle that admits a supply of air to keep them in active working condition for a long period of time.

Fourth—Because it is all ready to use on the seeds simply by the addition of a little water—or can be sprinkled on the soil.
WHAT FARMOGERM WILL DO.

THE PICTURE THAT TELLS THE STORY

Increase Crops of Legumes.

In worn out soils, and soils deficient in nitrates, inoculated legumes will show an increase in growth of anywhere from fifty to two hundred per cent, (some tests reported by Bulletin No. 71 of U. S. Department of Agriculture show increase as high as one thousand per cent) in fact, in some soils in which an untreated crop would absolutely fail, when the seeds are treated with Farmogerm, a very large crop can be secured. The plants are sturdier and will stand drought better because the root development is much greater.

Dr. Geo. T. Powell, President of Agricultural Expert's Association, says, "At Highland Farm forty days from the time of sowing the seed, examination of the plants showed one hundred and forty per cent more nodules on the plots with inoculated seed. The difference in growth was so very marked that it was not at all difficult to pick out the inoculated plot at some little distance."
"On August 2nd, an examination of the plants was made at Orchard Farm, Ghent, New York, when twenty-five plants from the uninoculated plot gave 62 nodules, while the same number of plants from the inoculated plot gave 339. The seed pods are much larger and more numerous."

In a crop of peas or beans this makes a great difference in quantity produced. Seeds have much greater germinating value and are therefore much better for planting.
ing part of food). If no gain whatever could be shown in the growth of the plants the increase in food value would pay for the slight additional expense and labor many times over. Farmers' Bulletin No. 315 U. S. Department of Agriculture states, "Even where the lack of nodule formation does not seem to hinder a healthy development of the plants, careful comparisons from analysis have shown the greater protein content of those well supplied with nodules."

![Illustration: These nodules give two hundred per cent. increase.]

The amount of nitrogen contained in a soy bean crop was found in one case to be 113.55 lbs. to the acre for the inoculated plants and 75.98 lbs. for those not inoculated, yet the appearance in the fields was the same, therefore, the inoculated crop, though apparently not improved, was in reality much more valuable for feeding or for green manure.
Give Quicker Growth.

Inoculated crops grow much faster, flower earlier, and pods mature earlier, so that you can count on from one or two weeks' saving in time between planting and harvesting.

Be of Benefit to Future Crops.

The expense of using nitrate of soda in sufficient quantity to maintain a proper amount in the soil has resulted in the gradual reduction of this most essential element for the successful growth of all plants.

A good crop of legumes well inoculated with Farmogerm Nodule Forming Bacteria, and growing in soil deficient in available nitrogen will add to the soil an amount of available nitrogen equal to from 700 to 1,000 lbs. of nitrate of soda per acre, which would cost from $25.00 to $30.00, and the nitrates added by the inoculated legume crop will stay in the soil better than nitrate of soda. In other words, you get larger and quicker growth and greater food value, and still have left in the soil a large amount of nitrates ready for any crop you choose to plant, whether it be corn, wheat, oats, or other grain; cotton or tobacco, potatoes or any vegetable.
In case your soil is already rich in nitrates, and no immediate increase in crop is shown, the bacteria may at least prevent the legume crop from drawing from the soil its nitrogen, thus saving it for the use of future crops. If you have not planned any legume crops this season, just look ahead one year and you will realize the value of doing so. You will not only get a bumper crop of the legume you plant, (list of which we print on page 26), but will be preparing your soil for bumper crops of whatever you plant next season.
DIRECTIONS FOR USING FARMOGERM.

It should be borne in mind that nitrogen-gathering bacteria are not disease germs—that they are beneficial and can be handled without any danger.

There are five ways of using Farmogerm.

The first and best way is to inoculate or treat the seed; second, to inoculate sufficient earth to spread over area to be treated; third, spraying; fourth, treating stable manure; fifth, spreading humus that has been treated with Farmogerm.

Treating Seeds.

As we have already explained to you, Farmogerm is a jelly containing millions of exceedingly small living bacteria (or plants), and while these bacteria are reasonably hardy, still some care should be taken to protect them from unfavorable conditions such as exposure to too much direct sunlight.

In order to properly distribute the bacteria, fill the bottle half full of water and shake thoroughly to break up the jelly so that it will be in a condition to distribute on the seeds. As it is, of course, advisable to get as many of the bacteria as possible on each seed, it is best not to use too much water, as there would be some chance that the bacteria would be washed off the seed by the excess of water. It is impossible to give exact instruction as to the quantity of water to be used. Small seeds, such as clover, require about a $\frac{1}{2}$ pint of water for 20 pounds or 10 quarts. Large seeds, such as peas, require about a pint for a bushel of seed. To hasten the drying of small seeds sand mixed with the seed after treatment will not only dry them quickly, but will take up all of the bacteria that have not adhered to the seed, and in this manner they will be distributed on the soil. It will also prevent these small seeds from sticking together.
When small quantities of seeds are to be treated, they can be mixed with the Farmogerm in a pail, as per directions on bottles. Where large quantities of seeds are to be treated, spread them in a thin layer on a clean floor and sprinkle them with Farmogerm thoroughly broken up in sufficient quantity of cool (not cold) water to wet the surface of the seed pile only, then by mixing the seeds with a shovel the rest will become sufficiently moistened. If not, add more water and mix again. The jelly does not dissolve in water, but can be readily broken up into small pieces. Spread the seed out thin, and plant as soon as they are dry enough so that they will not stick together.

A little sugar mixed with the water when inoculating will be of benefit, especially if the soil is unfavorable. Use at the rate of about 2 tablespoons of sugar for 20 pounds or 10 quarts of seed. For a small quantity of seed use about 1 teaspoonful of sugar for a pint of seed. The advantage of this is that some soils do not contain the proper proportions of food for the bacteria, and may be otherwise unfavorable to their growth. The addition of a little sugar gives necessary food for the bacteria during their early growth, and enables them to get a good start in spite of adverse conditions.

In place of water, fresh or skimmed milk can be used to advantage, to moisten the seeds—and will have the same effect as the addition of sugar. The soil in small gardens sometimes is not in good condition for raising peas, beans or sweet peas, and the addition of lime is not always convenient. This difficulty can be corrected by sprinkling a little screened coal ashes or mixed coal and wood ashes in the furrows or drills before the seeds are planted.

For Crops Already Planted.

When crops are already up and inoculation seems desirable, the Farmogerm can be mixed with soil taken from the field by spreading the soil in a thin layer and sprinkling thoroughly with Farmogerm mixed with plenty of water, then mix with more soil and distribute on the field. About 200 lbs. of
soil would be sufficient for one acre of land. The best time to
do this is just before or during rainy weather, as the bacteria will
be more apt to be carried down to the roots of the plants.

Spraying the Plants.

Farmogerm can be sprayed with water on growing crops,
care being taken to supply sufficient water to carry the bacteria
to the roots of the plants.

Mixing With Manure.

Farmogerm can be mixed with stable manure if same is
not over-heated by fermentation. Spread in even layer and fol-
low same directions as given above for garden soil. This will
greatly increase the value of the manure as a fertilizer.
Inoculated Humus.

Careful tests of humus inoculated with *Farmogerm Pure-bred Bacteria* have proved this to be a very valuable method of distributing the bacteria under conditions where inoculation by distribution of soil seems preferable. The great danger in distributing the bacteria in soil from other fields is the distribution of new weeds and crop diseases which may prove very destructive in a new location. The humus which we use is of exceptionally fine quality. It is sterilized by steam to kill the weeds and destructive plant and soil diseases, then it is thoroughly treated with Farmogerm and shipped to you in bags enough to inoculate one acre of land by mixing with the soil and distributing broadcast. Another advantage of this method is that the humus contains many fertilizing elements of great value, and when inoculated with Farmogerm to add the nitrates it becomes an ideal fertilizer for many crops.
UNFAVORABLE CONDITIONS FOR THE USE OF FARMOGERM.

We wish to keep clearly before you the fact that Farmogerm is not a cure for all soil troubles. It will supply the nitrates in abundant quantities, but it will not sweeten soil that is sour, nor take the place of potash or phosphates. These materials are comparatively cheap and easily supplied, and if these exist in the soil, green manure from Farmogerm Treated Legumes will serve to liberate them. Avoid the following conditions if you look for success:

Acid Soil.

If, owing to bad methods of cultivation or excessive amount of water, your land has become acid or sour, it must be well limed and cultivated before it will be suitable for the growth of most farm crops. Nitrogen-Gathering Bacteria are small plants, and no exception to this rule. Improper cultivation and preparation of the soil makes it impervious to air and moisture, and tends to acid or sour conditions. If you use Farmogerm and do not get good results, it is absolutely sure that your land is in poor condition to successfully raise most farm crops.

To Test Soil for Sourness.

Get a piece of blue litmus paper from your druggist, take a small mass of the moist soil, break in two, and insert a strip of the paper between; then press the lumps together, and leave for twenty minutes. If, upon removing the paper, it appears reddish or pink, there is acid present, and the soil must be limed. About a thousand lbs. of lime to the acre is the average amount necessary to use.
Bad Seed.

Failure on account of poor or insufficient seed sometimes happens, but from Farmogerm,—NEVER. Never put Farmogerm on seeds that have been treated with insect poison. In this case use Farmogerm on the soil.

Unfavorable Weather Conditions.

Drought soon after planting would, of course, hinder the growth of the crops, and while the bacteria would not be killed, they would remain inactive until favorable conditions prevailed which might be too late for proper development of the plants. If drought occurs, however, after the crop is well started, the increase of sturdy root growth caused by Farmogerm will aid the plant greatly in withstanding the drought.

DON'T

Don't keep the bottle of Farmogerm in the sunlight, as this might destroy the bacteria.

Don't mix the contents of bottle with hot water, or ice water.

Don't plant in sour or acid soil.

Don't use bacteria on any crop not named on the label of bottle.

Don't use Farmogerm on seeds that have been treated with insect poison.

Don't open bottles of Farmogerm until you are ready to use the contents.

Don't bring the treated seeds in contact with commercial fertilizers before planting.

Don't spread the seeds in the sun to dry.
FARMOGERM GUARANTEE.

WE GUARANTEE Farmogerm to be a pure culture of active, vigorous, nitrogen-gathering bacteria of the variety indicated by the label. We guarantee that the bacteria are high-bred, that is, bred up to a high point of nitrogen-gathering ability, on a like principle, and by similar methods as cows are bred up to a large milk yield, or horses to a high speed capacity. We guarantee that each bottle of Farmogerm contains these strong, active bacteria in sufficient quantity to inoculate the amount of seed or soil specified on the label.
PROOF.

Every statement we have made in this book is proved by government tests and by the letters, which we print, from many practical farmers and agricultural experts. Furthermore, we say to you, prove it yourself.
PLANTING SUGGESTIONS.

Cover Crops.

When thousands of farmers and gardeners find it profitable to sow an ordinary cover crop, think of the profit you will find in sowing an inoculated legume for a cover crop. Most any cover crop does some good. It at least prevents washing and leaching, and it adds humus to the soil when turned under. But these advantages are obtained from the legume crop, and in addition the legume gives you the opportunity of drawing great quantities of nitrogen from the air and storing it in your soil for future crops. Understand, we say the legume gives you this opportunity. It is for you to see to it that the legume is supplied with its particular variety of nitrogen-gathering bacteria. For without bacteria, even a legume crop will not add nitrogen to your soil. Supply the bacteria by using Farmogerm.

Soiling Crops.

Think, too, of the advantage of sowing an inoculated legume for your soiling crop, if you practice soiling. If you use peas for soiling, perhaps the bacteria are already established. But, even then, in most cases, you can add still more nitrates by using Farmogerm. If oats are your soiling crop, you are draining the soil of its nitrates instead of adding nitrates. Plant one of the clovers or vetches inoculated with Farmogerm instead of oats. You will have a heavier crop to cut, a crop richer in protein, and one which will add nitrates to the soil, instead of taking nitrates out.

Legumes Planted With Other Crops.

Soy beans, or cow peas treated with Farmogerm, and planted with corn will furnish a small amount of nitrates for the growing crop from decaying nodules of the legume, and
when turned under, will furnish large quantities of nitrates for the next season's crop. This method has the advantage of saving the loss of the use of the land for a season.

For Orchard, Vineyard and Berry Culture.

To keep up the necessary supply of nitrates in land devoted to orchard, vineyard or berry culture, the use of a legume crop for green manure is advocated by leading authorities. The object of this is to maintain a sufficient supply of nitrates for the growing of trees and vines. By treating the legumes with Farmogerm, the large increase of available nitrates makes this plan even more advisable. Clovers are most largely used for this purpose, but any legume that is suited to the locality will, if inoculated with our pure-bred bacteria, give the same result. If this plan is followed, care should be taken to leave sufficient space around each tree or plant for proper cultivation.

TESTING TO SHOW RESULTS.

In examining crops to ascertain results of using Farmogerm, you must bear in mind that a casual examination that may cause you to say "Well, I don't see much difference," is about as unsatisfactory as judging the milk capacity of a cow by looking at the shape of her horns, or the speed of a horse by the length of its tail.

Remember that we make three claims. First—Increase of crop; second—increased fertility of soil; third—and by no means last, the increased food value of crop. Any one of these results is ample reason for the use of Farmogerm.

To make an intelligent test, therefore, we make the following suggestions:

In some part of the field plant a small space with seeds that have not been inoculated. If the land slopes select the highest part for this purpose, so that bacteria from the rest of the land cannot be washed on to it by rains.
Examining Comparative Growth.

As the plants grow, notice the difference in height not by looking at them, but by measuring. Notice the difference in size of stalks and sturdiness of plants, and finally when crop is grown, cut an equal space from treated and untreated portions, and weigh the products.

To Examine for Fertility.

Dig up an equal number of plants from both plots, taking great care not to strip the nodules from the roots, and count the nodules or swellings on the roots. Do this before they have completed flowering because after seeding the nodules pass into the soil. Nodules mean nitrates, and a good supply of these on the roots of the crop when plowed in will mean an abundant supply of nitrates for any crop you may raise next year.

Test of Food Values.

With such crops as garden peas and beans, the pods will be larger and better filled. With forage crops, the darker, richer, green color, larger blossoms, etc., indicate the increased protein content, and that means richer muscle building food for your stock.
PRICES.

<table>
<thead>
<tr>
<th>Size</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garden Size</td>
<td>(enough for average family garden)</td>
<td>$.50</td>
</tr>
<tr>
<td>1 Acre Size</td>
<td>(enough to treat the seed or soil for 1 acre of land)</td>
<td>2.00</td>
</tr>
<tr>
<td>2 Acre Size</td>
<td>(enough for 2 acres of land)</td>
<td>4.00</td>
</tr>
<tr>
<td>5 Acre Size</td>
<td>(enough for 5 acres of land)</td>
<td>9.00</td>
</tr>
</tbody>
</table>

TERMS.

Cash, check, or money order must accompany all orders. Send cash or money order for small amounts.

Farmogerm is prepared for the following legumes in one, two and five acre sizes.

- Red Clover,
- Mammoth Clover,
- Crimson Clover,
- Yellow Clover,
- Burr Clover
- White Clover,
- Sweet Clover,
- Alsike,
- Alfalfa or Lucerne,
- Perennial Pea,
- Fenugreek,
- Lentils,
- Sanfoin,

- Berseem,
- Garden Peas,
- Cow Peas,
- Canadian Field Peas,
- Garden Beans,
- Soy Beans,
- Vetch,
- Lupins,
- Lathyrus Sylvestris,
- Peanuts,
- Robinia,
- Wistaria,
- and other Legumes.
We furnish mixed cultures good for all crops named on label in one, two and five acre sizes as follows:

No. 1—Good for Red, White, Crimson, Alsike, Mammoth and Berseem Clovers.

No. 2—Good for Alfalfa, or Lucerne, and Sweet Clover.

No. 3—Good for Vetch and Canadian Field Peas.

No. 4—Good for Soy Beans and Cow Peas.

No. 5—Good for Garden Peas, Garden Beans, and Sweet Peas.

In Garden sizes we furnish cultures as follows:

Good for Garden Peas, Garden Beans, and Sweet Peas.

Good for White Clover for lawns.

Good for Garden Peas only.

Good for Garden Beans only.

Good for Sweet Peas only.

Farmogerm is for sale by leading seed houses.
Dr. G. H. Earp-Thomas,
Vice-President, Earp-Thomas Farmogerm Co.,
233 Washington St.,
Bloomfield, N. J.

Dear Dr. Earp-Thomas:

I greatly enjoyed my visit to your laboratory, and take pleasure in stating that I have every confidence in your method of preparing culture of bacteria for inoculating the various leguminous crops. While I am not a bacteriologist, I have devoted some study and attention to the subject, and it seemed to me that your work was carried on in a thoroughly scientific manner. I believe that the process you use have all the value you claim for them, and that your method of air bottles in which you send cut cultures, is a very valuable device.

Your work to me seems full of great promise for the farming industry, and I certainly hope you will be able to develop your facilities very rapidly.

With best wishes, I remain,

Very truly yours,

L. B. JUDSON.
Extract from letter of E. B. Fred, Asst. Bacteriologist, Virginia Agricultural Experiment Station, Blackburg, Va.

“All of Old Process showed contamination. Mostly moulds. Farmogerm was entirely free from contamination.”

(Signed) E. B. FRED.

The above tests were made with culture of Farmogerm for Red Clover, Alfalfa, Cowpeas, Soy Beans and Crimson Clover.

Prof. Jacob G. Lipman, Soil Chemist of the New Jersey Agricultural Experiment Station, New Brunswick, N. J.

In a letter written to us on November 20th, 1908, states that he got good results from the use of Farmogerm for Alfalfa, Cowpeas, and Garden peas.

Spring Valley, N. Y., Dec. 1, 1908.

“While my report of my application of Farmogerm is somewhat belated, I take pleasure in advising you of resultant use.

I had planted two crops of wax beans, in soil absolutely without fertilizer of any description, with fair results and had the third crop up about three inches before applying Farmogerm. While it was very late in the season and dangerously near the frost line, the crop matured with the finest beans it was ever my pleasure to behold. Every one of almost exactly the same size and fully three times the quantity of previous crops.

I was only able to get the one picking, as frost stuck us with the plants alive with nodules.

With the evidence of Farmogerm so plainly written in such barren soil, I have no hesitancy in sincerely recommending your product, which in my case, fully substantiated your claims, if it did not exceed them.

LOUIS BARBERIE.
William S. Downs,
Attorney at Law,
Derby, Conn.

Earp-Thomas Farmogerm Co.,
Bloomfield,
New Jersey.

Gentlemen:

Your favor of yesterday at hand. I sowed one acre of Alfalfa about September 1st, inoculated with your farmogerm and it has come up very evenly and I have a very good stand at the present time. I put one ton of lime on the ground and prepared the ground very thoroughly before sowing. The weather has been very dry for the past month but it does not seem to have affected it very much.

I have tried Alfalfa on two different occasions before this and never succeeded in getting as good a stand as I have at the present time. I also sowed about an acre and a half of red clover about the same time after it was inoculated with your farmogerm and this is coming up nicely too. Am much pleased with the results so far.

Yours truly,

W. S. DOWNS.

July 1, 1908.

I have tried your Farmogerm on beans this spring with most gratifying results, the inoculated beans making a much more vigorous growth, maturing earlier and producing a larger crop than those not inoculated. I think I will try Farmogerm on alfalfa if I sow any this year.

EDWARD W. UNDERHILL, Syosset, N. Y.

July 8, 1908.

After using your culture this season in the garden on peas and beans, it gives me pleasure to endorse it. The results from its use were very marked both in growth and production and I intend employing it more extensively another year. I consider it a valuable aid to the farmer.

JOHN M. LEWIS, Syosset, N. Y.
Earp-Thomas Farmogerm Co.,
Bloomfield, N. J.

My dear Sirs:—

In reply to your inquiry as to my experience with Farmogerm, I am glad to be able to say that I am more than pleased. Quite a number of our farmers have sown alfalfa in the last few years and without success, the crop soon disappearing after it was a few inches high. I inoculated the seed with Farmogerm according to your directions, and after clean cultivation of the soil all summer I sowed the seed August 25th after a light rain. the first since early in July, harrowed the seed in and then dragged down smooth. In five days the young plants began to appear and grew thriftily. We had no rain until Sept. 26th and then no more until early in November; but the alfalfa kept on growing and was the only green oasis in the neighborhood and was admired by all who saw it. The poultry, turkeys, chickens and ducks to the number of over 100 foraged off it all fall and early winter, but it is, I think, well rooted, some of which are one-eighth inch in diameter and must be about 18 inches long. The nodules are there all right.

Yours truly,

WALTER EYMAN,
Bellevill, Ills.

July 10, 1908.

I feel obliged to let you know of the remarkable success I had with your Farmogerm. I had sown a pint of First-of-All peas, which I had left over from the previous year, and they had been in the ground about a week, when I secured a bottle of Farmogerm. I dissolved the contents of the bottle in water and sprinkled the drills thoroughly. That night and the next day it rained, so I believe the inoculation of the planted seed was complete. My experience with First-of-All peas heretofore has been that they attained a height of about two feet, and while bearing generously the pods would contain one, two and three peas at the most. This year the vines grew to a height of between five and six feet (brushed, of course) and were densely loaded with pods mostly containing five, six and seven peas. In previous years about three pickings would clean the vines. This year I picked nine messes, beginning on June 11, while the vines were still full of blossoms and the last picking was on July 7. The result is all the more remarkable that the ground was poor and very heavy with clay.

My success with sweet peas has been equally as good.

J. MILTON UNANGST, Glen Ridge, N. J.
July 10, 1908.

With reference to your inquiry regarding the results which I have received with Farmogerm on peas and beans planted this summer; would state that I used no other fertilizer along with it, and the results have been more than satisfactory.

The roots of the plants were densely covered with nodules and both peas and beans grew luxuriantly, yielding heavily, and surpassed those of my neighbors in every respect.

As the soil was by no means adapted to good crops, being very rocky, and the loam very shallow, I was greatly surprised and pleased with the results.

T. H. SOULE, Bloomfield, N. J.

September 7, 1908.

The yield of my beans was most remarkable to me, because I had them on a very poor piece of land. I thought I could not grow anything on it. If I live I shall have more of your Farmogerm next spring for some other plants.

MATH. HEFTY, Farmville, Va.

September 10, 1908.

I used the Farmogerm on peas and Lima beans. The peas so treated did very much better than those not treated and I had the finest peas in the neighborhood, as near as I could find out.

H. L. CADMUS, East Orange, N. J.

September 14, 1908.

Your Farmogerm is all you claim it to be, at least that is my experience. Has the advantage over most forms of nitrogen-fixing bacteria of being ready for use, or practically so, as the only thing necessary is the addition of water. Vines vigorous where used, on seed, yield increased. Nodules quite plenty on roots.

Bacteria mean Nodules
Nodules mean Nitrates
Nitrates mean Big Crops